OUR LADY OF AFRICA S.S NAMILYANGO (OLAN)

A LEVEL PURE MATHEMATICS SEMINAR QUESTIONS 2024

ORGANISED ON SATURDAY 05TH OCTOBER 2024.

ALGEBRA

- **1.** (a) The sum of n terms of a particular series is given by $S_n = 17n 3n^2$;
 - (i) Find an expression for the n^{th} term of the series.
 - (ii) Show that the series is an Arithmetic progression.
 - (b) A student deposits shs. 1,200,000 once into her savings account on which an interest of 8% is compounded per annum. After how many years will her balance exceed shs, 200,000?
 - (c) A piece of land of area $50,100m^2$ is divided in such a way that the areas of the plots are in an Arithmetic progression (AP). If the area of the smallest and the largest plots are $2m^2$ and $1000m^2$ respectively, find the;
 - (i) Number of plots in the piece of land.
 - (ii) Total area of the first 13 plots to the nearest square metres.
- **2.** (a) Solve the inequality $\frac{x+3}{x-2} \ge \frac{x+1}{x-2}$
 - (b) Given the curve, $y = \frac{(x-1)(x-4)}{(x-5)}$
 - (i) Find the range of values of y for which the curve doesnot lie and hence deduce the coordinates of the turning points.
 - (ii) Show that y = x is an asymptote and state the other asymptote
 - (iii) Sketch the curve.
- 3. (a) Solve for x; $64x^{\frac{2}{3}} + x^{\frac{-2}{3}} = 20$
 - (b) Find the ratio of the coefficient of x^7 to that of x^8 in the expression of $\left(3x + \frac{2}{3}\right)^{17}$
 - (c)(i) Expand $(1 + x)^{-2}$ in descending powers of x including the term in x^{-4}
 - (ii) If x = 9, find the % error in using the first two terms of the expression in c(i) above.
- **4.** (a) Given that W and Z are two complex numbers, solve the simultaneous equations;

$$3Z + W = 9 + 11i$$

$$iW - z = -8 - 2i$$

- (b) Use Demoivre's theorem to simplify; $\frac{\left[\sqrt{3}(\cos\theta+i\sin\theta)\right]^8}{[3\cos2\theta+3i\sin2\theta]^3}$
- (c) If $(1+3i)z_1 = 5(1+i)$, show that the locus of $|z-z_1| = |z_1|$ where Z is a complex number is a circle and find its Centre and radius
- (d) Given that the factors (x 1) and (x + 1) are factors of the polynomial, $f(x) = ax^4 + 7x^3 + x^2 + bx 3$, find the values of the constants a and b. Hence, find the set for real values of x for which f(x) > 0

TRIGONOMETRY

- **5.** (a) Prove that $\tan(\theta + 60^{\circ}) \tan(\theta 60^{\circ}) = \frac{\tan^2 \theta 3}{1 3\tan^2 \theta}$
 - (b) Show that $-\sqrt{5} \le cosx + 2sinx \le \sqrt{5}$

- (c) Express 10cosxsinx + 12cos2x in the form $Rsin(2x + \beta)$, where R is positive and β is an acute angle. Hence find the maximum and minimum values of $10\cos x\sin x + 12\cos 2x$ and state clearly the values of x when they occur for $0^0 \le x \le 360^0$.
- **6.** (a) Solve the equation: $\frac{4sin^2\theta}{cosec^{\theta}} + \frac{3}{cosec^2\theta sec\theta} = sin^2\theta$ for $0^0 \le \theta \le 360^0$
 - (b) (i) Prove that $\frac{\sin 2A + \cos 2A + 1}{\sin 2A + \cos 2A 1} = \frac{\tan (45^0 + A)}{\tan A}$
 - (ii) Show that $\frac{\sin\theta\cos2\theta + \sin3\theta\cos6\theta}{\sin\theta\sin2\theta + \sin3\theta\sin6\theta} = \cot 5\theta$
 - (c) Show that $\frac{\sin\theta}{1-\cos\theta} = \cot\frac{\theta}{2}$. Hence solve $\tan\frac{\theta}{2} = \sqrt{3}\sin\theta$ for $0^0 \le \theta \le 180^0$
- **7.** (a) Given that X, Y, Z are angles of a triangle. Prove that $\tan\left(\frac{X-Y}{2}\right) = \left(\frac{x-y}{x+y}\right)\cot\left(\frac{Z}{2}\right)$, hence solve the triangle if x = 9cm, y = 5.7cm and $z = 57^{\circ}$
 - (b) Prove that $Sin[2sin^{-1}(x) + cos^{-1}(x)] = \sqrt{1-x^2}$
 - (c) Solve the equation; $2\sin(60^{\circ} x) = \sqrt{2}\cos(135^{\circ} + x) + 1$ for $-180^{\circ} \le x \le 180^{\circ}$
- **8.** (a) If $tanx = \frac{7}{24}$, and $cosy = \frac{-4}{5}$ where x is reflex and y is obtuse, find without using tables or calculators the value of sin(x + y)
 - (b) In a triangle ABC, $\overline{AB} = 10cm$, $\overline{BC} = 17cm$ and $\overline{AC} = 21cm$ calculate the angle BAC.
 - (c) Solve the equation sin3x + sin7x = sin5x for $0^0 \le x \le 90^0$

 - (d) (i) Given that 2A + B = 135 show that $tanB = \frac{tan^2A 2tanA 1}{1 2tanA tan^2A}$ (ii) If α is an acute angle and $tan\alpha = \frac{4}{3}$, show that $4sin(\theta + \alpha) + 3cos(\theta + \alpha) = 5cos\theta$. Hence solve for θ the equation $4sin(\theta + \alpha) + 3cos(\theta + \alpha) = \frac{\sqrt{300}}{4}$ for $-180^{\circ} \le \theta \le 180^{\circ}$

ANALYSIS

- **9.** (a) The point (2,1) lies on the curve $Ax^2 + By^2 = 11$ where A and B are constants. If the gradient of the curve at the point is 6. Find the values of A and B.
 - (b) One side of a rectangle is three times the other. If the perimeter increases by 2%. What is the percentage increase in the area?
 - (c) A rectangular box without a lid is made from a thin cardboard. The sides of the base are 2xcm and 3xcm and the height of the box is hcm. If the total surface area is $200cm^2$, show that h = $\left(\frac{20}{r} - \frac{3x}{5}\right)$ cm. And hence find the dimensions of the box to give maximum volume.
- **10.** (a) If $y = \frac{\cos x}{x^2}$, Prove that; $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + (2 + x^2)y = 0$
 - (b) Given the parametric equations $x = 3 + 4\cos\alpha$, $y = 5 8\sin\alpha$. Find $\frac{d^2y}{dx^2}$
 - (c) A curve is defined by the parametric equations $x = t^2 t$, y = 3t + 4. Find the equation of the tangent to the curve at (2,10)

- (d) Using calculus of small changes, Show that $\cos 44.6^{\circ} = \frac{\sqrt{2}}{2} \left(\frac{900 + 2\pi}{900} \right)$
- 11. (a). Show that $\int_{1}^{10} x \log x^2 dx = 2 \left(50 \frac{99}{4 \ln 10} \right)$
 - (b) Express $\frac{x^3+9x^2+28x+28}{(x+3)^2}$ into partial fractions, hence or otherwise show that;
 - $\int_0^1 \frac{x^3 + 9x^2 + 28x + 28}{(x+3)^2} dx = \frac{1}{3} \left(10 + \ln \frac{4}{3} \right)$
 - (c) Find the integrals; (i) $\int \ln \left(\frac{2}{x}\right) dx$ (ii) $\int (x\cos x)^2 dx$
- (iii) $\int \frac{x}{\sqrt{1-3x}} dx$
- 12.(a) The pressure in an engine cylinder is given by; $P = 8000[1 \sin(2\pi t 3)]Nm^{-1}$ At what time does this pressure reach a maximum and what is the maximum pressure.
- (b) Calculate the area enclosed by the curve $y = \sin x$ and the line $y = \frac{1}{2}$, from x = 0 to $x = \pi$ and the x-axis.
- (c) The area bounded by the curves $y^2 = 32x$ and $y = x^3$ is rotated about the x-axis through one revolution. Show that the volume of the solid of the solid formed is $\frac{320\pi}{7}$ cubic units
- (d) Using Maclaurin's theorem, expand $(x + 1)\sin^{-1}(x)$ up to the term in x^2
- 13. (a) Using the substitution y = uv, solve the differential equation $x^2 \frac{dy}{dx} = x^2 + xy + y^2$
- (b) Given that $\frac{dy}{dx} = e^{-2y}$ and y = 0, when x = 5, find the value of x when y = 3
- (c) Solve the differential equation $(1+x)\frac{dy}{dx} = xy + xe^x$ given that y(0) = 1
- (d) The rate at which a liquid runs from a container is proportional to the square root of the depth of the opening below the surface of the liquid. A cylindrical petrol storage tank is sunk in the ground with its axis vertical. There is a leak in the tank at an unknown depth. The level of the petrol in the tank originally full is found to drop by 20cm in 1 hour and by 19cm in the next hour. Find the depth at which the leak is located.

VECTORS

- **14.** (a) Point B is the foot of a perpendicular from point A (3, 0, -2) to the line \mathbf{r} where $\mathbf{r} = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$
- (i) Find the values of λ corresponding to the point B. hence state the coordinates of B.
- (ii) Calculate the distance of the point A from the line $r = \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ and write down the vector parametric equation of the plane containing point A and the line r
- (b) Find the area of a parallelogram of which the given vectors are adjacent sides, $\mathbf{a} = \mathbf{i} + 2\mathbf{j} \mathbf{k}$, $\mathbf{b} =$ j + k respectively.

- (c) A and B are points (3,1,1) and (5,2,3) respectively and C is a point on the line $\mathbf{r} = \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$. If angle $BAC = 90^{\circ}$, find the coordinates of C.
- **15.** (a) Find the coordinates of the point where the line $\frac{x-3}{5} = \frac{3-y}{-2} = \frac{z-4}{3}$ meets the plane 2x 3y + 7z 10 = 0
- (b) The vector $\begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$ is perpendicular to the plane containing the line; $\frac{x-3}{-2} = \frac{y+1}{a} = \frac{z-2}{1}$, find the;
 - (i) Value of a
 - (ii) Cartesian equation of the plane
- (c) Find the perpendicular distance from the point M (4,-3,10) to the line with vector equation $\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$
- **16.** (a) Two planes L_1 and L_2 are defined by 3x 4y + 2z 5 = 0 and $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$ respectively. Find:
 - (i) Cartesian equation of plane L_2
 - (ii) Acute angle between the two planes
 - (iii) Vector equation of the line of intersection of \mathcal{L}_1 and \mathcal{L}_2
 - (b) Given the points L (2,-1, 0), M (4, 7, 6) and N (8, 5,-4). Find the vector equation of the line which joins the midpoint of LM and MN.
 - (c) Determine the equation of the plane equidistant from the points A (1, 3, 5) and B (2,-4, 4)
- **17.** (a) Find the equation of the line through point A(1,-2,3) perpendicular to the line $\frac{x-5}{2} = \frac{y-2}{1} = \frac{z-1}{3}$
 - (b) Prove that Points A (-2,0,6) and B(3,-4,5) lie on opposite sides of the plane 2x y + 3z = 21
 - (c) Find the equation of a plane containing points A (1, 1, 1), B (1, 0, 1) and C (3, 2, -1)
 - (d) Show that the vectors 2i j + k, i 3j 5k and 3i 4j 4k are coplanar
 - (e) Point R with position vector \mathbf{r} divides the line segment AB internally in the ratio λ : μ , Show that $r = \frac{a\mu + b\lambda}{\lambda + \mu}$ where a and b are position vectors of A and B respectively. Hence find the position vector of point
 - R which divides AB in the ratio 1:2, given that the position vector of A is $\begin{pmatrix} 4 \\ -3 \\ 5 \end{pmatrix}$ and that of B is $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$

COORDINATE GEOMETRY

18. (a) A line L passes through the point of intersection of the lines x - 3y - 4 = 0 and y + 3x - 2 = 0. If L is perpendicular to the line 4y + 3x = 0, determine the equation of the line L.

- (b) Variable point P(x, y) moves such that its distance from point A(3,0) is equal to its distance from the linex +3 = 0. Describe the locus of point P.
- (c) Calculate the perpendicular distance between the parallel lines 3x + 4y + 10 = 0 and 3x + 4y 15 = 0
- (d) Calculate the area of the triangle which has sides given by the equations 2y x = 1, y + 2x = 8 and 4y + 3x = 7
- 19. (a) The triangle ABC with vertices A(1,-2), B(7,6) and C(9,2), find:
 - (i) The equations of the perpendicular bisectors of AB and BC.
 - (ii) The coordinates of the point of intersection of the perpendicular bisectors
 - (iii) Find the equation of the circle passing through the three points A,B,C of the triangle above.
- (b) Show that the circles $x^2 + y^2 2ax + c^2 = 0$ and $x^2 + y^2 2by c^2 = 0$ are orthogonal.
- (c) Find the length of the tangent to the circle $x^2 + y^2 4x + 9 = 0$ from the point (5,7)
- **20**. (a) Determine the vertex, focus, directrix and axis of the parabola $y^2 2y 8x 17 = 0$ hence sketch the parabola.
- (b) The tangents to the parabola $y^2 = 4ax$ at points $P(ap^2, 2ap)$ and $Q(aq^2, 2aq)$ meet at point T, find the coordinates of T.
- (c) If $\left(\frac{1}{2},2\right)$ is one extremity of a focal chord of the parabola $y^2=8x$, find the coordinates of the other extremity.
- (d) If y = mx + c is a tangent to the parabola $y^2 = 4ax$, show that $m = \frac{a}{c}$
- **21**. (a) Show that the parametric equations $x = 1 + 4\cos\theta$ and $y = 2 + 3\sin\theta$ represent an ellipse. Hence determine the coordinates of the centre and the lengths of the semi axes
- (b) The normal at the point P(5cos θ , 4sin θ) on an ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ meets the x and y-axes at A and B respectively. Find the mid-point of the line AB
- (c)(i) Find the equation of the tangent to the hyperbola whose points are of the parametric form $\left(2t, \frac{2}{t}\right)$.
- (ii) Find the equations of the tangents in (i) which are parallel to y + 4x = 0
- (iii) Determine the distance between the tangents in c(ii).

END